Problem Illustrating The Transport of A Pollutant in A Stream

One Curie of ¹³⁴Cesium-134 (¹³⁴C) is accidentally released into a small stream. The stream channel has an average width of 40 m and an average depth of 2 m. The average water flow in the stream is 40 m³/s and the stream channel drops 1 meter in elevation over a distance of 10 km. Assuming that the ¹³⁴Cs is evenly distributed across the stream channel, estimate the distribution of ¹³⁴Cs as a function of distance downstream (using a maximum distance of 30 km) at 1, 3, 6, and 12 hours. Also estimate the ¹³⁴C activity (concentration) at a distance of 10 km at 6 hours after the release. (¹³⁴Cs has a half-life of 2.07 years.)

Solution:

(1) Calculate the average stream velocity in m/s.

cross-sectional area of stream channel = width * depth = $(40m)(2m) = 80 m^2$ average velocity = $(40 m^3/s)/(80 m^2) = 0.50 m/s$

(2) Calculate the rate constant, k, for 134 Cs.

For a first-order reaction: $\ln \frac{C}{C_{a}} = -kt$

where C = the concentration (or activity of ¹³⁴C) at time t

 C_0 = the initial concentration (or activity) of ¹³⁴C

- k = the decay rate constant, and
- t = time.

At the half-life($t_{1/2}$), one-half of the original concentration remains. Substitution of this into the equation above yields:

$$\ln\left(\frac{\frac{1}{2}C_{o}}{C_{o}}\right) = -\frac{kt_{1/2}}{\sqrt{2}} \text{ or}$$

$$-\frac{\ln 0.5}{t_{1/2}} = -\frac{\ln 0.5}{2.05 \text{ yr}} = k = 0.338 \text{ yr}^{-1}$$

$$(0.338 \text{ yr}^{-1})\left(\frac{\text{yr}}{365 \text{d}}\right)\left(\frac{\text{d}}{24 \text{ hr}}\right)\left(\frac{\text{hr}}{60 \text{ min}}\right)\left(\frac{\text{min}}{60 \text{ s}}\right) = 1.07 \text{ x } 10^{-8} \text{ s}^{-1}$$

Thus, the decay rate constant for 134 Cs is 1.07 x 10⁻⁸ s⁻¹.

(3) Calculate the longitudinal dispersion coefficient, E (also referred to as the coefficient of eddy diffusion).

slope =
$$\frac{1 \text{ m}}{10000 \text{ m}}$$
 = 10⁻⁴
u = $\sqrt{\text{gds}} = \sqrt{(9.81 \text{ m/s}^2)(2 \text{ m})(10^{-4})} = 0.044 \text{ m/s}$
E = 0.011 $\frac{\text{v}^2 \text{w}^2}{\text{du}}$ = 0.011 $\frac{(0.50 \text{ m/s})^2(40 \text{ m})^2}{(2 \text{m})(0.044 \text{ m/s})}$ = 50 m²/s

(4) Arrange data in the proper units:

(5) Input data to program and obtain graph

Example Problem: Longitudinal Concentration Profiles as A Function of Time

(6) Calculate C(x,t) at 10 km and at 6 hr. (x = 10,000m and t = 6 hr = 21,600 s)

$$C(x,t) = \frac{M_{o}}{wd\sqrt{4\pi Et}} EXP\left(-\frac{(x-vt)^{2}}{4Et} - kt\right)$$

= $\frac{1 \times 10^{6} \ \mu Ci}{(40m)(2m)\sqrt{4\pi(50m^{2}/s)(21600s)}} EXP\left(-\frac{(10000m - (0.50m/s)(21600s))^{2}}{4(50m^{2}/s)(21600s)} - (1.07x10^{-8}s^{-1})(21600s)\right)$
= $3.39 \times 10^{-6} e^{-0.148} = 3.39 \times 0.862$
= $2.92 \times 10^{-6} Ci / m^{3}$
= $2.92 \times 10^{-9} Ci / L = 2.92 \ nCi / L$