Problem Illustrating The Transport of A Pollutant in A Stream

One Curie of ${ }^{134}$ Cesium-134 $\left({ }^{134} \mathrm{C}\right)$ is accidentally released into a small stream. The stream channel has an average width of 40 m and an average depth of 2 m . The average water flow in the stream is $40 \mathrm{~m}^{3} / \mathrm{s}$ and the stream channel drops 1 meter in elevation over a distance of 10 km . Assuming that the ${ }^{134} \mathrm{Cs}$ is evenly distributed across the stream channel, estimate the distribution of ${ }^{134} \mathrm{Cs}$ as a function of distance downstream (using a maximum distance of 30 km) at $1,3,6$, and 12 hours. Also estimate the ${ }^{134} \mathrm{C}$ activity (concentration) at a distance of 10 km at 6 hours after the release. $\left({ }^{134} \mathrm{Cs}\right.$ has a half-life of 2.07 years.)

Solution:
(1) Calculate the average stream velocity in m / s.
cross-sectional area of stream channel $=$ width $*$ depth $=(40 \mathrm{~m})(2 \mathrm{~m})=80 \mathrm{~m}^{2}$ average velocity $=\left(40 \mathrm{~m}^{3} / \mathrm{s}\right) /\left(80 \mathrm{~m}^{2}\right)=0.50 \mathrm{~m} / \mathrm{s}$
(2) Calculate the rate constant, k , for ${ }^{134} \mathrm{Cs}$.

For a first-order reaction: $\quad \ln \frac{C}{C_{o}}=-\mathrm{kt}$
where $\quad \mathrm{C}=$ the concentration (or activity of ${ }^{134} \mathrm{C}$) at time t
$\mathrm{C}_{\mathrm{o}}=$ the initial concentration (or activity) of ${ }^{134} \mathrm{C}$
$\mathrm{k}=$ the decay rate constant, and
$\mathrm{t}=$ time.
At the half-life $\left(\mathrm{t}_{1 / 2}\right)$, one-half of the original concentration remains. Substitution of this into the equation above yields:

Thus, the decay rate constant for ${ }^{134} \mathrm{Cs}$ is $1.07 \times 10^{-8} \mathrm{~s}^{-1}$.
(3) Calculate the longitudinal dispersion coefficient, E (also referred to as the coefficient of eddy diffusion).

$$
\begin{aligned}
& \text { slope }=\frac{1 \mathrm{~m}}{10000 \mathrm{~m}}=10^{-4} \\
& \mathrm{u}=\sqrt{\mathrm{gds}}=\sqrt{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~m})\left(10^{-4}\right)}=0.044 \mathrm{~m} / \mathrm{s} \\
& \mathrm{E}=0.011 \frac{\mathrm{v}^{2} \mathrm{w}^{2}}{\mathrm{du}}=0.011 \frac{(0.50 \mathrm{~m} / \mathrm{s})^{2}(40 \mathrm{~m})^{2}}{(2 \mathrm{~m})(0.044 \mathrm{~m} / \mathrm{s})}=50 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

(4) Arrange data in the proper units:
$\mathrm{M}_{\mathrm{o}} \quad=1$ curie $=1 \times 10^{6} \square \mathrm{Ci}(\operatorname{In}$ the program this is entered as 1 Ci$)$
$\mathrm{w} \quad=40 \mathrm{~m}$
$\mathrm{d} \quad=2 \mathrm{~m}$
E $\quad=50 \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{t} \quad=$ variable in seconds (s)
$\mathrm{x} \quad=$ variable in meters (m)
$\mathrm{v} \quad=0.50 \mathrm{~m} / \mathrm{s}$
$\mathrm{k} \quad=1.07 \times 10^{-8} \mathrm{~s}^{-1}$
(5) Input data to program and obtain graph

Example Problem: Longitudinal Concentration Profiles as A Function of Time

(6) Calculate $C(x, t)$ at 10 km and at 6 hr . $(x=10,000 \mathrm{~m}$ and $\mathrm{t}=6 \mathrm{hr}=21,600 \mathrm{~s})$

$$
\begin{aligned}
\mathrm{C}(\mathrm{x}, \mathrm{t}) & =\frac{\mathrm{M}_{\mathrm{o}}}{\mathrm{wd} \sqrt{4 \square \mathrm{Et}}} \operatorname{EXP}-\frac{(x \square v t)^{2}}{4 E t}-\mathrm{kt} \\
& =\frac{1 \times 10^{6} \square \mathrm{Ci}}{(40 \mathrm{~m})(2 \mathrm{~m}) \sqrt{4 \square\left(50 \mathrm{~m}^{2} / \mathrm{s}\right)(21600 \mathrm{~s})}} \operatorname{EXP}-\frac{(10000 \mathrm{~m} \square(0.50 \mathrm{~m} / \mathrm{s})(21600 \mathrm{~s}))^{2}}{4\left(50 \mathrm{~m}^{2} / \mathrm{s}\right)(21600 \mathrm{~s})}-\left(1.07 \times 10^{-8} \mathrm{~s}^{-1}\right)(21600 \mathrm{~s}) \\
& =3.39 \times 10^{-6} \mathrm{e}^{-0.148}=3.39 * 0.862 \\
& =2.92 \times 10^{-6} \mathrm{Ci} / \mathrm{m}^{3} \\
& =2.92 \times 10^{-9} \mathrm{Ci} / \mathrm{L}=2.92 n \mathrm{Ci} / \mathrm{L}
\end{aligned}
$$

