Menu

Continuous Release into the Air

The three dimensional nature of our atmosphere often makes tracking airborne pollutants very difficult. This section of Fate allows you to estimate the concentration of a pollutant at a specific distance downwind from a continually releasing source. An example of a source that might release this type of pollutant is a cooling stack on a a pulp mill.

Step 1 Manually convert input data to metric units: meters, grams, and seconds.
Step 2: Enter or calculate the release height

Use the calculated value if the pollutant temperature is higher than the air temperature.

\[ ΔH_r = \frac{ū_sd}{ū}(1.5 + 2.68 * 10^{-3}Pd\frac{T_s - T_s}{T_s}) \]
Step 3: Enter the remaining data
Step 4: Choose atmospheric stability
Day Radiation Intensity Night Cloud Cover
Wind Speed (m/s) Strong Medium Slight Cloudy Calm and Clear
< 2 A A-B B
2-3 A-B B C E F
3-5 B B-C C D E
5-6 C C-D D D D
> 6 C D D D D
Step 5: Enter the dispersion coefficients

Horizontal

Vertical

A:
B:
C:
D:
E:
F:
A:
B:
C:
D:
E:
F:
Concentration calculations

Result: g/m3

Graph varying distance in Y
\[C_{(x,y,z)} = \frac{Q_m}{2\pi\sigma_y\sigma_zu}e^{(-\frac{1}{2}(\frac{y}{\sigma_y})^2)}(e^{(-\frac{1}{2}(\frac{z-H_r}{\sigma_z})^2)}+e^{(-\frac{1}{2}(\frac{z+H_r}{\sigma_z})^2)}) \]
Graph varying distance in Z
\[C_{(x,y,z)} = \frac{Q_m}{2\pi\sigma_y\sigma_zu}e^{(-\frac{1}{2}(\frac{y}{\sigma_y})^2)}(e^{(-\frac{1}{2}(\frac{z-H_r}{\sigma_z})^2)}+e^{(-\frac{1}{2}(\frac{z+H_r}{\sigma_z})^2)}) \]